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J. Phys. A: Math. Gen. 18 (1985) L713-L718. Printed in Great Britain 

LETTER TO THE EDITOR 

The vibrational spectrum of Eden clusters in many dimensions 

Deepak Dhari 
Laboratoire de Physique Thtorique et Hautes Energies$, Universitt Pierre et Marie Curie, 
4 Place Jussieu, 75230 Paris Cedex 05, France 

Received 7 June 1985 

Abstract. The configuration-averaged vibrational spectrum of Eden clusters with N sites 
on a d-dimensional hypercubical lattice is determined exactly in the limit d >>log N >> 1. 
It is shown that the spectral dimension of these clusters is 2. 

The Eden model (Eden 1961) is the simplest of growth models, and has been the 
subject of much investigation in recent years (Peters et a1 1979, Rhcz and Plischke 
1985, Jullien and Botet 1985, Family and Vicsek 1985). It can be proved that Eden 
clusters are compact in any space dimension (Richardson 1973, Dhar 1985) but exact 
expressions for any of the cluster averages are not know even in two dimensions. 

Parisi and Zhang (PZ) (1984) considered Eden clusters with N sites on a d- 
dimensional hypercubical lattice, and showed that in the limit d >> N the problem 
simplifies, and can be solved exactly. The central assumption of PZ is that the 
coordination number of any site is much less than the maximum coordination number 
(2d)  allowed on the lattice. Since the maximum coordination number in a typical 
cluster of size N in the large-d limit can be shown to vary as log N, the regime of 
validity of the PZ limit may be extended to include all values of N such that d >> log N. 
In this limit, each site of the cluster is a surface site (has unoccupied neighbours). 
Thus the behaviour of Eden clusters in this limit is expected to be quite different from 
the limit of infinite N at fixed d. In the latter limit, the clusters are compact. The 
average cluster diameter varies as and the fractional number of surface sites is 
zero. The requirement that the average cluster diameter N' ld  be much greater than 1 
is the same as log N >> d. We thus expect a crossover from PZ like small-N behaviour 
to the asymptotic large-N behaviour at log N --. d. Because of its analytical solubility, 
the PZ limit deserves further study. It may also help in a better understanding of finite 
sized Eden clusters. 

In the large-d limit, the probability that a cluster will contain loops goes to zero, 
and the clusters are tree-like. They are thus the same as Eden trees, which are defined 
(Dhar and Ramaswamy (DR) 1985) in any dimension d by the Eden rule (equal 
probability of growth at any of the perimeter sites) with the added condition that 
occupation of sites leading to formation of loops in the cluster is forbidden. Numerical 
simulations of DR showed that diffusion on these clusters is anomalous, with the 
spectral dimension d' (characterising the density of states of low-frequency vibrational 
modes of the system) not equal to d, and also not equal to 2d/d, where d, is fractal 
dimension of Brownian random walks on the cluster. The relation d = 2 d / d ,  is 
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sometimes used to define the spectral dimension d‘ (e.g. Alexander and Orbach 1982) 
and its breakdown implies that the two definitions are not equivalent. 

For Eden trees, the spectral dimension d’ seems to depend on d, the dimension of 
the underlying lattice. For d = 2 and 3 ,  Monte Carlo simulations provide an estimate 
d’ = 1.2 and 1.3 respectively. It has not been computed analytically for any of the 
growth models so far. In this letter, the vibrational spectrum of Eden clusters is 
determined exactly in the PZ limit d >>log N >> 1 .  Besides its relationship to the problem 
of Eden trees in finite dimensions, the problem is of interest as it provides an exact 
determination of the conjguration-aueraged vibrational spectrum of a system with random- 
ness in more than one dimension. 

We then obtain the density profile of Eden clusters in the PZ limit as a function of 
the distance from the origin, and also the fractional number of sites having a specified 
number of descendants. The latter result, in conjunction with the node-counting 
theorem for trees, is used to derive a series representation for the configuration-averaged 
vibrational spectrum. We determine the low-frequency limit of the integrated spectrum 
and show that it corresponds to 2 = 2 .  

Following PZ, we specify an ( n  + 1 )  site cluster in infinite dimensions by its topologi- 
cal graph having ( n  + 1) vertices (labelled 0 to n )  with lines joining nearest neighbours. 
Each graph is a tree. The site labelled 0 is called the root. For each site except the 
root, there is exactly one neighbouring site, called its predecessor, with a smaller label. 
Sites which will be disconnected from the root if any particular site is removed are 
called its descendants. The subtree formed by a site and its descendants is called a 
descendant subtree. 

For the rth site, there are r possible predecessors. Hence there are N !  distinct 
allowed labelled trees with ( N  + 1 )  sites. In the Eden model, each of these graphs is 
assigned an equal probability of occurrence. It is easy to determine some average 
structural properties of these trees. 

Let n(r, N )  be the expected number of sites at a distance r from the root in a 
cluster of ( N +  1 )  sites, where the distance is measured along bonds. Clearly, n(0, N )  
is 1, and for all N >  1 

n(r, N ) = n ( r ,  N - I ) + n ( r - I ,  N - l ) / N .  ( 1 )  

For large N,  these equations may be approximated as 

N d n ( r ,  N ) / d N = n ( r - 1 , N )  ( 2 )  

n ( r ,  N ) = ( l o g  N ) r / r ! .  (3) 

which are easily integrated to give 

The first moment of the number distribution function n(r, N ) ,  ( r ) ,  is proportional to 
the average extent of clusters measured along bonds. From ( 3 )  it is easy to see that 
( r )  is equal to log N asymptotically for large N in agreement with the result of PZ. 
Higher moments of the distribution are also easy to compute. 

One can also calculate the fractional number of sites as a function of its depth 
from the boundary. For example, the probability that none of the subsequently added 
sites gets attached to the ith site is the product of probabilities that ( i+ l ) th ,  
( i  + 2)th . . . , Nth sites do not attach to it. Hence it is equal to 

i i + l  N - 1  i 
i + l  i + 2 ” ’  N N‘ 
-- __-_ - (4) 
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Hence the mean number of sites with no descendants in a tree of ( N  + 1 )  sites is 

i ( N + 1 )  -=- 
i = l  N 2 ’ 

The probability that site i has precisely one descendant site j ( i  + 1 S j S N )  is similarly 
seen to be 

and is independent of j .  Hence the probability that site i has exactly one descendant 
(anyj) is i( N - i)/ N (  N - 1 ) .  Summation over i of this probability gives us the expected 
number of sites having precisely one descendant in the cluster. By simple algebra, it 
is easy to see that the fractional number of such sites is 

Similarly, we can calculate the fractional number of sites whose descendant subtree 
is topologically equivalent to a given graph (figure 1). The probability that a site i has 
exactly r descendants jl, j,, . . , , j ,  ( i  < j ,  < j 2  . . . < j ,  S N )  with a specified predecessor 
for each j ,  is i( N - r - l ) ! / N !  independent of jl,j2,. . . , j ,  Summing over all the 
allowed values of j,’s, and averaging over i, we find the average fractional number of 
sites whose descendants form a subtree topologically equivalent to a given graph T, 
with ( r + l )  vertices. This is the same for all graphs T, with the same number of 
vertices, and is equal to 1 / (  r + 2)!. The number of distinct subtrees T, with r descendants 
is r ! .  Hence the probability that a randomly picked site in a large tree has exactly r 
descendants is l / ( r + l ) ( r + 2 ) .  

for large N. 

Figure 1. The six possible descendant subtrees for a site i with three descendants j , ,  j,, j ,  
( i  < j ,  < j ,  < j s  S N). Note that subtrees with different descent histones corresponding to 
the same final geometrical configuration (e.g. last three shown here) are counted as distinct. 

The vibrational problem associated with the Eden clusters is defined as follows: 
to each occupied site of the Eden cluster, we assign a unit mass and connect all 
nearest-neighbour masses on the cluster by springs of unit spring-constant. The 

Figure 2. The integrated frequency spectrum for Eden clusters f i (u2 )  as a function of w 2  
(schematic). 
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Hamiltonian of this system of coupled oscillators is written as 

N 

H = c ;(xi - + f Axf 
nn i =  1 

(7 )  

where x, is the scalar displacement associated with the site i, and the first summation 
extends over all nearest neighbours. We have introduced a coupling constant A for 
later convenience. The mass at the root is assumed held fixed so that ,yo = 0. The 
partition function of this system is given by 

N 

= n ( w f + A ) - ’ ”  
i = l  

where w i  ( i  = 1 to N )  are the frequencies of the N eigenmodes of the system when A = 0. 
The frequency spectrum of this system of coupled oscillators is determined most 

easily by an  application of the node-counting theorem for trees (DR). For each site i, 
other than the root, we define a function F i ( w z )  recursively as follows. 

(i) If site i has no descendants, then 

Fi( w 2 )  = (1 - w z  + A ) - ’ .  (9 )  

(ii) Otherwise, 
-1  

l + A - w 2 + Z [ 1 - F k ( w 2 ) ] )  k 

where the summation over k extends over all the direct descendants k of i. Let H ( w 2 )  
denote the number of eigenfrequencies w f  less than w 2 .  By the node-counting theorem 
for trees (the arguments of DR use the free boundary conditions; for the fixed boundary 
condition at the root, the modification is trivial) it follows that for all w 2  

N 

H ( w 2 ) =  C f ? ( - F ; ( w z ) )  
i = l  

where e( . )  is the Heaviside step function. 

and its descendants. Explicitly, 
Let Xi be the sub-Hamiltonian which describes the interaction between the site i 

where the primed summations extend only over sites belonging to the descendant 
subtree of i. By using the recursion relation (lo),  and induction over the size of the 
descendant subtree of i, it can be shown that (details omitted) for any site i 

yf ([+- ““-) exp(-X,) = n’ [ F , ( w 2  = O)]’” exp[ -;{ 1/F , (w2 = 0) - l}xf]. (13) 
--Q3 (2?7)l/z 

As a simple consequence of this result, putting i = 0, and x, = 0 we get 
N 

Z ( A ) =  n [ F , ( W ~ = O ) ] ’ ’ ~ .  
, = I  
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F , ( w 2 )  depends only on the topology of the subtree formed by the descendants of 
i. For all sites i with no descendants (approximately $ N  in number for large N )  we 
have F , ( w 2 )  = 1 / (  1 + A  - w 2 )  = f o ( w 2 )  (say). Of the remaining sites, approximately dN 
sites have exactly one descendant and for them 

F l ( w 2 )  = ( 2 + A  - w 2 - f o ( w 2 ) ) ~ ’ = f i ( w 2 )  (say). 

Proceeding in this fashion, grouping together sites with the same subtree structure in 
(11) we can write the following (exact) series representation for the normalised 
integrated configuration-averaged frequency spectrum 

where f T , ( w 2 )  is the value of F ( w 2 )  corresponding to a site whose descendant subtree 
is isomorphic to a tree graph T, with r descendants, and the summation over 7, is the 
r !  distinct labelled subtrees with r descendants. Writing down the first few terms of 
this series explicitly 

H ( w ~ )  =+e(  - f o ( w 2 ) ) + ; e (  - f i ( w 2 ) ) + .  . . . (16) 

This equation has the following self-evident diagrammatic representation 

Equation (16) is a series of positive terms. Though each individual term in it is not a 
non-decreasing function of w 2 ,  the summation H (  w 2 )  is, as is obvious from its definition. 
It is easily shown that as w 2  tends to infinity, each of the fT,(w2) is negative. Hence 
the contribution of the rth-order terms to the sum is 1/{( r + 1)( r + 2)) for large w 2 .  As 

= 1. 
1 2 

r = O  ( r  + 1)( r + 2) 

We verify that H ( w 2 )  tends to 1 as w 2  tends to infinity. The convergence of the series, 
though uniform, is rather slow. There are r !  distinct diagrams of order r (grouping 
together topologically equivalent subtrees with different histories, this number may be 
reduced to still very substantial 2r-i) ,  and the error incurred of the series is truncated 
after r terms decreases only as [ l / ( r + 2 ) ] .  

For the remainder of this letter, we shall need the values of F i ( w 2 )  only at  w 2  = 0, 
and we shall write F , ( A )  instead of the more cumbersome F l ( w 2 = 0 ,  A ) .  From (14) 
we get 

N 

log Z(A)=i log F(A) (19) 

and grouping together sites with topologically equivalent subtrees, as in the case of 
~ ( w ’ )  earlier, we get for large N after configuration averaging 

r = l  

The spectral dimension d’ is defined by the relation 

2 = W - 0  lim+ log H(w2) / log  w. (21) 
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Then from (8) it follows that for small A > 0 and d < 2 

log i ( A )  2‘ lim log Z ( A ) / N  = log Z(0) + CAd’*+ higher order terms in A (22) 
N-CC 

and for d = 2, we get for small positive A 

log Z(A)  = log Z ( 0 )  + CA log A +higher order in A. (23) 

Differentiating (20) with respect to A we get 

d 
- log Z ( A )  = f 
dA , = o ( r + 2 ) !  r, dA ( logfr,( A ) ) .  

From the recursion equations (9) and (10) it follows that 

and 
fr ,(A = 0) = 1, (25) 

-fr,(h)l*=o= - ( r +  1). (26) 
d 

dA 

Substituting in (24) we get 

a series which is logarithmically divergent. If A is small but slightly greater than zero, 

for all r d  l / A ,  and is small otherwise. In that case, the summation in (27) has an 
upper cutoff at r = l / A  and hence for small A we get 

d - In i( A ) = $ log A +higher order in A. 
dA 

Comparing with (23) we conclude that for Eden cluster in infinite dimensions 

d = 2  (29) 
which is the promised result. 

I thank Professor B Diu and the members of LPTHE for hospitality at the UniversitC 
Pierre et Marie Curie. 
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